Classical descriptive set theory, generalized descriptive set theory, and I_0

Luca Motto Ros

Department of Mathematics “G. Peano”
University of Turin, Italy
luca.mottoros@unito.it
https://sites.google.com/site/lucamottoros/

Set theory today: A conference in honor of Georg Cantor
Vienna, 10–14.09.2018

Joint work with Vincenzo Dimonte
Classical descriptive set theory

According to Kechris’ book, “descriptive set theory is the study of **definable sets** in **Polish** (i.e. separable completely metrizable) **spaces**”, and of their **regularity properties**.

Kechriss, *Classical descriptive set theory*, 1995
According to Kechris’ book, “descriptive set theory is the study of definable sets in Polish (i.e. separable completely metrizable) spaces”, and of their regularity properties.

Kechris, *Classical descriptive set theory*, 1995

Polish spaces: separable completely metrizable spaces,
According to Kechris’ book, “descriptive set theory is the study of definable sets in Polish (i.e. separable completely metrizable) spaces”, and of their regularity properties.

Polish spaces: separable completely metrizable spaces, e.g. the *Cantor space* ω^2 and the *Baire space* ω^ω.
According to Kechris’ book, “descriptive set theory is the study of **definable sets** in **Polish** (i.e. separable completely metrizable) **spaces**”, and of their **regularity properties**.

Kechris, Classical descriptive set theory, 1995

Polish spaces: separable completely metrizable spaces, e.g. the **Cantor space** \(\omega^2 \) and the **Baire space** \(\omega^\omega \).

Definable subsets: **Borel sets**, ...
Classical descriptive set theory

According to Kechris’ book, “descriptive set theory is the study of definable sets in Polish (i.e. separable completely metrizable) spaces”, and of their regularity properties.

Kechris, *Classical descriptive set theory*, 1995

Polish spaces: separable completely metrizable spaces, e.g. the *Cantor space* ω^2 and the *Baire space* ω^ω.

Definable subsets: *Borel sets*, *analytic sets*,

L. Motto Ros (Turin, Italy)
According to Kechris’ book, “descriptive set theory is the study of \textit{definable sets} in \textbf{Polish} (i.e. separable completely metrizable) \textbf{spaces}, and of their \textbf{regularity properties}.

\textbf{Kechris, Classical descriptive set theory, 1995}

\textbf{Polish spaces}: separable completely metrizable spaces, e.g. the \textit{Cantor space} ω^2 and the \textit{Baire space} ω^ω.

\textbf{Definable subsets}: \textit{Borel sets, analytic sets, projective sets}...
According to Kechris’ book, “descriptive set theory is the study of definable sets in Polish (i.e. separable completely metrizable) spaces”, and of their regularity properties.

Kecharis, Classical descriptive set theory, 1995

Polish spaces: separable completely metrizable spaces, e.g. the *Cantor space* ω^2 and the *Baire space* ω^ω.

Definable subsets: *Borel sets*, *analytic sets*, *projective sets*...

Regularity properties: Perfect set property (PSP) for a set $A = “$either $|A| \leq \omega$, or ω^2 topologically embeds into $A”$;
According to Kechris’ book, “descriptive set theory is the study of **definable sets** in **Polish** (i.e. separable completely metrizable) **spaces**”, and of their **regularity properties**.

Kechris, Classical descriptive set theory, 1995

Polish spaces: separable completely metrizable spaces, e.g. the *Cantor space* \(\omega^2 \) and the *Baire space* \(\omega^\omega \).

Definable subsets: *Borel sets*, *analytic sets*, *projective sets*...

Regularity properties: Perfect set property (PSP) for a set \(A \) = “either \(|A| \leq \omega \), or \(\omega^2 \) topologically embeds into \(A \)”; Baire property;
According to Kechris’ book, “descriptive set theory is the study of **definable sets** in **Polish** (i.e. separable completely metrizable) **spaces**”, and of their **regularity properties**.

Kechris, Classical descriptive set theory, 1995

Polish spaces: separable completely metrizable spaces, e.g. the *Cantor space* ω^2 and the *Baire space* ω^ω.

Definable subsets: *Borel sets*, *analytic sets*, *projective sets*...

Regularity properties: Perfect set property (PSP) for a set A = “either $|A| \leq \omega$, or ω^2 topologically embeds into A”; Baire property; Lebesgue measurability, ...
According to Kechris’ book, “descriptive set theory is the study of \textit{definable sets} in \textit{Polish} (i.e. separable completely metrizable) \textit{spaces}, and of their \textit{regularity properties}.

\underline{Kechris, \textit{Classical descriptive set theory}, 1995}

\textbf{Polish spaces}: separable completely metrizable spaces, e.g. the \textit{Cantor space} ω^2 and the \textit{Baire space} ω^ω.

\textbf{Definable subsets}: \textit{Borel sets}, \textit{analytic sets}, \textit{projective sets}...

\textbf{Regularity properties}: Perfect set property (PSP) for a set $A = \text{"either} |A| \leq \omega, \text{or} \omega^2 \text{topologically embeds into } A\text{"}; Baire property; Lebesgue measurability, ...

G. Cantor (1870) proved that all closed subsets of \mathbb{R} have the PSP: this is one of the earlier results in the area now called (classical) descriptive set theory.
Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.
Non-separable spaces

Drop *separability* from the definition of a Polish spaces (while keeping *complete metrizability*). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: $\prod_{n \in \omega} T_n$ where each T_n is discrete. In particular, the space $B(\lambda) = \omega \lambda$ and, if $\text{cof}(\lambda) = \omega$, the space $C(\lambda) = \prod_{i \in \omega} \lambda_i$, where the λ_i's are increasing and cofinal in λ (in symbols, $\lambda_i \nearrow \lambda$).
Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: \(\prod_{n \in \omega} T_n \) where each \(T_n \) is discrete. In particular, the space \(B(\lambda) = \omega \lambda \) and, if \(\text{cof}(\lambda) = \omega \), the space \(C(\lambda) = \prod_{i \in \omega} \lambda_i \), where the \(\lambda_i \)'s are increasing and cofinal in \(\lambda \) (in symbols, \(\lambda_i \nearrow \lambda \)).

Definable sets: usual Borel sets (\(\sigma \)-algebra generated by open sets);
Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: \(\prod_{n\in\omega} T_n\) where each \(T_n\) is discrete. In particular, the space \(B(\lambda) = \omega \lambda\) and, if \(\text{cof}(\lambda) = \omega\), the space \(C(\lambda) = \prod_{i\in\omega} \lambda_i\), where the \(\lambda_i\)'s are increasing and cofinal in \(\lambda\) (in symbols, \(\lambda_i \nearrow \lambda\)).

Definable sets: usual *Borel* sets (\(\sigma\)-algebra generated by open sets); \(\lambda\)-analytic sets = continuous images of \(B(\lambda)\) (plus \(\emptyset\)).
Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: $\prod_{n \in \omega} T_n$ where each T_n is discrete. In particular, the space $B(\lambda) = \omega \lambda$ and, if $\text{cof}(\lambda) = \omega$, the space $C(\lambda) = \prod_{i \in \omega} \lambda_i$, where the λ_i's are increasing and cofinal in λ (in symbols, $\lambda_i \nearrow \lambda$).

Definable sets: usual *Borel* sets (σ-algebra generated by open sets); λ-*analytic* sets $=$ continuous images of $B(\lambda)$ (plus \emptyset).

Regularity properties: λ-PSP for a set $A = \text{"either } |A| \leq \lambda, \text{ or } B(\lambda) \text{ topologically embeds into } A\text{"}$.
Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: $\prod_{n\in\omega} T_n$ where each T_n is discrete. In particular, the space $B(\lambda) = \omega \lambda$ and, if $\text{cof}(\lambda) = \omega$, the space $C(\lambda) = \prod_{i\in\omega} \lambda_i$, where the λ_i's are increasing and cofinal in λ (in symbols, $\lambda_i \nearrow \lambda$).

Definable sets: usual *Borel* sets (σ-algebra generated by open sets); λ-*analytic* sets = continuous images of $B(\lambda)$ (plus \emptyset).

Regularity properties: λ-PSP for a set A = “either $|A| \leq \lambda$, or $B(\lambda)$ topologically embeds into A”.

Among many other things, Stone showed e.g. that $B(\lambda) \approx C(\lambda)$ when $\lambda > \omega$ and $C(\lambda)$ is defined,
Non-separable spaces

Drop *separability* from the definition of a Polish spaces (while keeping complete metrizability). Approach mainly motivated by analysis, where one deals with non-separable Banach spaces as well, and general topology.

Baire spaces: \(\prod_{n \in \omega} T_n \) where each \(T_n \) is discrete. In particular, the space \(B(\lambda) = \omega \lambda \) and, if \(\text{cof}(\lambda) = \omega \), the space \(C(\lambda) = \prod_{i \in \omega} \lambda_i \), where the \(\lambda_i \)'s are increasing and cofinal in \(\lambda \) (in symbols, \(\lambda_i \nearrow \lambda \)).

Definable sets: usual *Borel* sets (*\(\sigma \)-algebra generated by open sets); \(\lambda \)-analytic sets = continuous images of \(B(\lambda) \) (plus \(\emptyset \)).

Regularity properties: \(\lambda \)-PSP for a set \(A = \) “either \(|A| \leq \lambda \), or \(B(\lambda) \) topologically embeds into \(A \)”.

Among many other things, Stone showed e.g. that \(B(\lambda) \approx C(\lambda) \) when \(\lambda > \omega \) and \(C(\lambda) \) is defined, and that all Borel/\(\lambda \)-analytic subsets of \(B(\lambda) \) have the \(\lambda \)-PSP.
Generalized descriptive set theory

Don’t care about separability and (complete) metrizability, but rather systematically replace \(\omega \) with an uncountable cardinal \(\kappa \) in all definitions.
Don’t care about separability and (complete) metrizability, but rather systematically replace \(\omega \) with an uncountable cardinal \(\kappa \) in all definitions. Motivation not totally clear to me, but, a posteriori, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).
Generalized descriptive set theory

Don’t care about separability and (complete) metrizability, but rather systematically replace ω with an uncountable cardinal κ in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Vaught (1974), Mekler-Väänänen (1993), Friedman-Hyttinen-Kulikov (2015), ...
Don’t care about separability and (complete) metrizability, but rather systematically replace ω with an uncountable cardinal κ in all definitions. Motivation not totally clear to me, but, *a posteriori*, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Generalized Cantor space and Baire space: κ^2 and κ^κ, endowed with the *bounded topology*, i.e. the topology generated by the sets $N_s = \{ x \in \kappa^2 \mid s \sqsubseteq x \}$ with $s \in <\kappa^2$ (and similarly for κ^κ).
Don’t care about separability and (complete) metrizability, but rather systematically replace ω with an uncountable cardinal κ in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Vaught (1974), Mekler-Väänänen (1993), Friedman-Hyttinen-Kulikov (2015), ...

Generalized Cantor space and Baire space: κ^2 and κ^κ, endowed with the \textit{bounded topology}, i.e. the topology generated by the sets $N_s = \{ x \in \kappa^2 \mid s \subseteq x \}$ with $s \in <\kappa^2$ (and similarly for κ^κ).

Definable sets: $\kappa^+\text{-Borel}$ sets = sets in the κ^+-algebra generated by open sets;
Don’t care about separability and (complete) metrizability, but rather systematically replace \(\omega \) with an uncountable cardinal \(\kappa \) in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Generalized Cantor space and Baire space: \(\kappa^2 \) and \(\kappa \kappa \), endowed with the \textit{bounded topology}, i.e. the topology generated by the sets \(\mathcal{N}_s = \{ x \in \kappa^2 | s \subseteq x \} \) with \(s \in <\kappa^2 \) (and similarly for \(\kappa \kappa \)).

Definable sets: \(\kappa^+ \)-Borel sets = sets in the \(\kappa^+ \)-algebra generated by open sets; \(\kappa \)-analytic sets = continuous images of closed subsets of \(\kappa \kappa \) (equivalently, continuous images of \(\kappa^+ \)-Borel subsets of \(\kappa^2 \)).
Don’t care about separability and (complete) metrizability, but rather systematically replace ω with an uncountable cardinal κ in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Vaught (1974), Mekler-Väänänen (1993), Friedman-Hyttinen-Kulikov (2015), ...

Generalized Cantor space and Baire space: κ^2 and $\kappa\kappa$, endowed with the \textit{bounded topology}, i.e. the topology generated by the sets $N_s = \{x \in \kappa^2 \mid s \sqsubseteq x\}$ with $s \in <\kappa^2$ (and similarly for $\kappa\kappa$).

Definable sets: $\kappa^+\text{-Borel}$ sets = sets in the κ^+-algebra generated by open sets; κ-\textit{analytic} sets = continuous images of closed subsets of $\kappa\kappa$ (equivalently, continuous images of κ^+-Borel subsets of κ^2).

Regularity properties: κ-PSP for a set $A = \text{“either } |A| \leq \kappa, \text{ or } \kappa^2 \text{ topologically embeds into } A\text{”;}$
Generalized descriptive set theory

Don’t care about separability and (complete) metrizability, but rather systematically replace ω with an uncountable cardinal κ in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Vaught (1974), Mekler-Väänänen (1993), Friedman-Hyttinen-Kulikov (2015), ...

Generalized Cantor space and Baire space: κ^2 and κ^κ, endowed with the \textit{bounded topology}, i.e. the topology generated by the sets $N_s = \{ x \in \kappa^2 \mid s \sqsubseteq x \}$ with $s \in <\kappa^2$ (and similarly for κ^κ).

Definable sets: κ^+-\textit{Borel} sets = sets in the κ^+-algebra generated by open sets; κ-\textit{analytic} sets = continuous images of closed subsets of κ^κ (equivalently, continuous images of κ^+-Borel subsets of κ^2).

Regularity properties: κ-PSP for a set A = “either $|A| \leq \kappa$, or κ^2 topologically embeds into A”; κ-Baire property (when it makes sense);
Don’t care about separability and (complete) metrizability, but rather systematically replace \(\omega \) with an uncountable cardinal \(\kappa \) in all definitions. Motivation not totally clear to me, but, \textit{a posteriori}, remarkable connections with other areas of set theory and model theory (Shelah’s stability theory).

Generalized Cantor space and Baire space: \(\kappa^2 \) and \(\kappa \kappa \), endowed with the \textit{bounded topology}, i.e. the topology generated by the sets \(N_s = \{ x \in \kappa^2 \mid s \subseteq x \} \) with \(s \in <\kappa^2 \) (and similarly for \(\kappa \kappa \)).

Definable sets: \(\kappa^+ \)-Borel sets = sets in the \(\kappa^+ \)-algebra generated by open sets; \(\kappa \)-analytic sets = continuous images of closed subsets of \(\kappa \kappa \) (equivalently, continuous images of \(\kappa^+ \)-Borel subsets of \(\kappa^2 \)).

Regularity properties: \(\kappa \)-PSP for a set \(A = \) “either \(|A| \leq \kappa \), or \(\kappa^2 \) topologically embeds into \(A \)”; \(\kappa \)-Baire property (when it makes sense); other “combinatorial” regularity properties.
Usually, generalized descriptive set theory is developed under the crucial condition

\[\kappa^{<\kappa} = \kappa \]

(†)

to ensure that e.g. both \(\kappa^2 \) and \(\kappa \kappa \) have a separability-like condition (i.e. they have a dense subset of size \(\kappa \)).
Usually, generalized descriptive set theory is developed under the crucial condition

\[\kappa^{<\kappa} = \kappa \]

(\dagger)

to ensure that e.g. both \(\kappa^2 \) and \(\kappa \kappa \) have a separability-like condition (i.e. they have a dense subset of size \(\kappa \)). This condition can equivalently be rewritten as

\[\kappa \text{ is regular and } 2^{<\kappa} = \kappa. \]
Generalized descriptive set theory

Usually, generalized descriptive set theory is developed under the crucial condition

\[\kappa^{<\kappa} = \kappa \]

(†)

to ensure that e.g. both \(\kappa^2 \) and \(\kappa \kappa \) have a separability-like condition (i.e. they have a dense subset of size \(\kappa \)). This condition can equivalently be rewritten as

\[\kappa \text{ is regular} \quad \text{and} \quad 2^{<\kappa} = \kappa. \]

The (first half of the) assumption above causes the loss of metrizability when \(\kappa > \omega \):
Usually, generalized descriptive set theory is developed under the crucial condition

\[\kappa < \kappa = \kappa \quad (\dagger) \]

to ensure that e.g. both \(\kappa^2 \) and \(\kappa \kappa \) have a separability-like condition (i.e. they have a dense subset of size \(\kappa \)). This condition can equivalently be rewritten as

\(\kappa \) is regular and \(2^{< \kappa} = \kappa \).

The (first half of the) assumption above causes the loss of metrizability when \(\kappa > \omega \): indeed, \(\kappa^2 \) is (completely) metrizable iff \(\kappa^2 \) is first-countable iff \(\text{cof}(\kappa) = \omega \). (The same holds for \(\kappa \kappa \)).
Usually, generalized descriptive set theory is developed under the crucial condition

$$\kappa^{<\kappa} = \kappa$$

(†) to ensure that e.g. both κ^2 and κ^κ have a separability-like condition (i.e. they have a dense subset of size κ). This condition can equivalently be rewritten as

$$\kappa$$ is regular and $$2^{<\kappa} = \kappa.$$

The (first half of the) assumption above causes the loss of metrizability when $\kappa > \omega$: indeed, κ^2 is (completely) metrizable iff κ^2 is first-countable iff $\text{cof}(\kappa) = \omega$. (The same holds for κ^κ.)

The resulting theory is extremely rich and interesting, but quite different from the classical one:
Usually, generalized descriptive set theory is developed under the crucial condition

$$\kappa^{<\kappa} = \kappa$$

(†)

to ensure that e.g. both κ^2 and $\kappa\kappa$ have a separability-like condition (i.e. they have a dense subset of size κ). This condition can equivalently be rewritten as

$$\kappa \text{ is regular and } 2^{<\kappa} = \kappa.$$

The (first half of the) assumption above causes the loss of metrizability when $\kappa > \omega$: indeed, κ^2 is (completely) metrizable iff κ^2 is first-countable iff $\text{cof}(\kappa) = \omega$. (The same holds for $\kappa\kappa$.)

The resulting theory is extremely rich and interesting, but quite different from the classical one: most of the nontrivial results are either simply false or at least independent of ZFC when $\kappa > \omega$ (e.g. both the Lusin’s separation theorem and Souslin’s theorem fail).
A general trend is emerging:

Large cardinals (especially when κ itself is a large cardinal) allow to preserve a bit more of the classical picture.
A general trend is emerging:

Large cardinals (especially when κ itself is a large cardinal) allow to preserve a bit more of the classical picture.

For example, $\kappa \kappa \not\approx \kappa^2$ if (and only if) κ is weakly compact.
A general trend is emerging:

Large cardinals (especially when κ itself is a large cardinal) allow to preserve a bit more of the classical picture.

For example, $\kappa \kappa \not\approx \kappa^2$ if (and only if) κ is weakly compact. On the other extreme, the generalized Cantor and Baire spaces enjoy all possible “pathologies” in the constructible universe L.
A general trend is emerging:

Large cardinals (especially when κ itself is a large cardinal) allow to preserve a bit more of the classical picture.

For example, $\kappa^\kappa \not\approx \kappa^2$ if (and only if) κ is weakly compact. On the other extreme, the generalized Cantor and Baire spaces enjoy all possible “pathologies” in the constructible universe L.

Many years ago, Džamonja suggested that maybe singular cardinals could give a better picture. Indeed, together with Väänänen, she studied a bit of generalized descriptive set theory with κ singular, mainly in connection with model theory (chainable models).
A general trend is emerging:

Large cardinals (especially when κ itself is a large cardinal) allow to preserve a bit more of the classical picture.

For example, $\kappa \not\approx \kappa^2$ if (and only if) κ is weakly compact. On the other extreme, the generalized Cantor and Baire spaces enjoy all possible “pathologies” in the constructible universe L.

Many years ago, Džamonja suggested that maybe singular cardinals could give a better picture. Indeed, together with Väänänen, she studied a bit of generalized descriptive set theory with κ singular, mainly in connection with model theory (chainable models).

More recently, Woodin suggested to study generalized DST under I_0 in connection with his study of the model $L(V_{\lambda+1})$ (where λ is the witness of I_0). Notice that such a λ has always countable cofinality.
The axiom I0

$I_0(\lambda)$ is the statement: There is a nontrivial elementary embedding $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a witness to $I_0(\lambda)$).
The axiom I0

$I0(\lambda)$ is the statement: There is a nontrivial elementary embedding $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a *witness* to $I0(\lambda)$).

$I0$ is the statement: there is λ for which $I0(\lambda)$.
I0 and Woodin’s analysis

The axiom I0

I0(\lambda) is the statement: There is a nontrivial elementary embedding $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a *witness* to I0(\lambda)).

I0 is the statement: there is λ for which I0(\lambda).

Woodin considers $V_{\lambda+2} = \mathcal{P}(V_{\lambda+1})$ as a large cardinal version of $\mathcal{P}(\omega^2)$:
The axiom I0

I0(\lambda) is the statement: There is a nontrivial elementary embedding
\(j : L(V_{\lambda+1}) \prec L(V_{\lambda+1}) \) with \(\text{crt}(j) < \lambda \) (we call \(j \) a witness to I0(\lambda)).

I0 is the statement: there is \(\lambda \) for which I0(\lambda).

Woodin considers \(V_{\lambda+2} = \mathcal{P}(V_{\lambda+1}) \) as a large cardinal version of \(\mathcal{P}(\omega^2) \): indeed, one can see \(V_\lambda \) as an analogue of \(V_\omega \approx \omega \),
I0 and Woodin’s analysis

The axiom I0

$\text{I0}(\lambda)$ is the statement: There is a nontrivial elementary embedding $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a witness to $\text{I0}(\lambda)$).

I0 is the statement: there is λ for which $\text{I0}(\lambda)$.

Woodin considers $V_{\lambda+2} = \mathcal{P}(V_{\lambda+1})$ as a large cardinal version of $\mathcal{P}(\omega^2)$: indeed, one can see V_λ as an analogue of $V_\omega \approx \omega$, so that $V_{\lambda+1} = \mathcal{P}(V_\lambda)$ is the analogue of $\mathcal{P}(\omega) \approx \omega^2$.
The axiom I_0

$I_0(\lambda)$ is the statement: There is a nontrivial elementary embedding $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a witness to $I_0(\lambda)$).

I_0 is the statement: there is λ for which $I_0(\lambda)$.

Woodin considers $V_{\lambda+2} = \mathcal{P}(V_{\lambda+1})$ as a large cardinal version of $\mathcal{P}(\omega^2)$: indeed, one can see V_λ as an analogue of $V_\omega \approx \omega$, so that $V_{\lambda+1} = \mathcal{P}(V_{\lambda})$ is the analogue of $\mathcal{P}(\omega) \approx \omega^2$. Following this analogy, Woodin considers the topology on $V_{\lambda+1}$ generated by the sets of the form

$$O_{a,\alpha} = \{ X \in V_{\lambda+1} \mid X \cap V_\alpha = a \}$$

for $\alpha < \lambda$ and $a \subseteq V_\alpha$.
The axiom 10

10(\lambda) is the statement: There is a nontrivial elementary embedding $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\text{crt}(j) < \lambda$ (we call j a witness to $10(\lambda)$).

10 is the statement: there is λ for which $10(\lambda)$.

Woodin considers $V_{\lambda+2} = \mathcal{P}(V_{\lambda+1})$ as a large cardinal version of $\mathcal{P}(\omega 2)$: indeed, one can see V_λ as an analogue of $V_\omega \approx \omega$, so that $V_{\lambda+1} = \mathcal{P}(V_\lambda)$ is the analogue of $\mathcal{P}(\omega) \approx \omega 2$. Following this analogy, Woodin considers the topology on $V_{\lambda+1}$ generated by the sets of the form

$$O_{a,\alpha} = \{ X \in V_{\lambda+1} \mid X \cap V_\alpha = a \}$$

for $\alpha < \lambda$ and $a \subseteq V_\alpha$.

Woodin claims that “the theory of $\mathcal{P}(V_{\lambda+1})$ in $L(V_{\lambda+1})$ under 10(\lambda) is reminiscent of the theory of $\mathcal{P}(\mathbb{R})$ in $L(\mathbb{R}) = L(V_{\omega+1})$ under AD”.
A test for Woodin’s claim is the Perfect Set Property PSP.
I0 and Woodin’s analysis

A test for Woodin’s claim is the Perfect Set Property PSP. Some of the following statements involve $U(j)$-representability, which is a technical notion isolated by Woodin reminiscent of the one of κ-weakly homogenously Souslin sets.
A test for Woodin’s claim is the Perfect Set Property PSP. Some of the following statements involve $U(j)$-representability, which is a technical notion isolated by Woodin reminiscent of the one of κ-weakly homogenously Souslin sets.

Theorem (Woodin)

Assume $I_0(\lambda)$, as witnessed by j. Every $U(j)$-representable set $A \subseteq V_{\lambda+1}$ in $L(V_{\lambda+1})$ satisfies the following dichotomy: either $|A| \leq \lambda$ or ω^2 topologically embeds into A.

L. Motto Ros (Turin, Italy)
Vienna, 11.09.2018 8 / 26
A test for Woodin’s claim is the Perfect Set Property PSP. Some of the following statements involve $U(j)$-representability, which is a technical notion isolated by Woodin reminiscent of the one of κ-weakly homogenously Souslin sets.

Theorem (Woodin)

Assume $\text{I}_0(\lambda)$, as witnessed by j. Every $U(j)$-representable set $A \subseteq V_{\lambda+1}$ in $L(V_{\lambda+1})$ satisfies the following dichotomy: either $|A| \leq \lambda$ or ω^2 topologically embeds into A.

Theorem (Shi)

Assume $\text{I}_0(\lambda)$, as witnessed by j. Then every set A in $L_\lambda(V_{\lambda+1})$ satisfies the following dichotomy: either $|A| \leq \lambda$ or $C(\lambda) = \prod_{i \in \omega} \lambda_i$ topologically embeds into A, where $\lambda_i \uparrow \lambda$.
I0 and Woodin’s analysis

Theorem (Shi)

Assume I0(\(\lambda\)), as witnessed by \(j\). Assume that all subsets of \(V_{\lambda+1}\) in \(L(V_{\lambda+1})\) are \(U(j)\)-representable.

Theorem (Cramer)

Assume I0(\(\lambda\)), as witnessed by \(j\). Every \(A \subseteq V_{\lambda+1}\) in \(L(V_{\lambda+1})\) satisfies the following dichotomy: either \(|A| \leq \lambda\) or \(B(\lambda) = \omega\) topologically embeds into \(A\).

Except for Woodin's result (which is the weakest!), the proofs are quite different from the classical ones dealing with the (classical) PSP, and indeed technical machineries specific to the model \(L(V_{\lambda+1})\) under I0(\(\lambda\)) are heavily involved.
Theorem (Shi)

Assume \(\text{I}0(\lambda) \), as witnessed by \(j \). Assume that all subsets of \(V_{\lambda+1} \) in \(L(V_{\lambda+1}) \) are \(U(j) \)-representable. Then every \(A \subseteq V_{\lambda+1} \) in \(L(V_{\lambda+1}) \) satisfies the following dichotomy: either \(|A| \leq \lambda \) or \(C(\lambda) = \prod_{i \in \omega} \lambda_i \) topologically embeds into \(A \), where \(\lambda_i \nearrow \lambda \).

Theorem (Cramer)

Assume \(\text{I}0(\lambda) \), as witnessed by \(j \). Every \(A \subseteq V_{\lambda+1} \) in \(L(V_{\lambda+1}) \) satisfies the following dichotomy: either \(|A| \leq \lambda \) or \(B(\lambda) = \omega \lambda \) topologically embeds into \(A \).

Except for Woodin’s result (which is the weakest!), the proofs are quite different from the classical ones dealing with the (classical) \(\text{PSP} \), and indeed technical machineries specific to the model \(L(V_{\lambda+1}) \) under \(\text{I}0(\lambda) \) are heavily involved.
Theorem (Shi)
Assume $\text{I}_0(\lambda)$, as witnessed by j. Assume that all subsets of $V_{\lambda+1}$ in $L(V_{\lambda+1})$ are $U(j)$-representable. Then every $A \subseteq V_{\lambda+1}$ in $L(V_{\lambda+1})$ satisfies the following dichotomy: either $|A| \leq \lambda$ or $C(\lambda) = \prod_{i \in \omega} \lambda_i$ topologically embeds into A, where $\lambda_i \nearrow \lambda$.

Theorem (Cramer)
Assume $\text{I}_0(\lambda)$, as witnessed by j. Every $A \subseteq V_{\lambda+1}$ in $L(V_{\lambda+1})$ satisfies the following dichotomy: either $|A| \leq \lambda$ or $B(\lambda) = ^\omega \lambda$ topologically embeds into A.

Except for Woodin’s result (which is the weakest!), the proofs are quite different from the classical ones dealing with the (classical) PSP, and indeed technical machineries specific to the model $L(V_{\lambda+1})$ under $\text{I}_0(\lambda)$ are heavily involved.
I0 and Woodin’s analysis

Theorem (Shi)

Assume I0(\(\lambda\)), as witnessed by \(j\). Assume that all subsets of \(V_{\lambda+1}\) in \(L(V_{\lambda+1})\) are \(U(j)\)-representable. Then every \(A \subseteq V_{\lambda+1}\) in \(L(V_{\lambda+1})\) satisfies the following dichotomy: either \(|A| \leq \lambda\) or \(C(\lambda) = \prod_{i \in \omega} \lambda_i\) topologically embeds into \(A\), where \(\lambda_i \nearrow \lambda\).

Theorem (Cramer)

Assume I0(\(\lambda\)), as witnessed by \(j\). Every \(A \subseteq V_{\lambda+1}\) in \(L(V_{\lambda+1})\) satisfies the following dichotomy: either \(|A| \leq \lambda\) or \(B(\lambda) = \omega \lambda\) topologically embeds into \(A\).

Except for Woodin’s result (which is the weakest!), the proofs are quite different from the classical ones dealing with the (classical) PSP, and indeed technical machineries specific to the model \(L(V_{\lambda+1})\) under I0(\(\lambda\)) are heavily involved.
Our goal is to study the generalized Cantor space λ^2 when λ is singular. We denote by λ_i any sequence of length $\mu = \text{cof}(\lambda)$ cofinal in λ.
Our goal is to study the generalized Cantor space λ^2 when λ is singular. We denote by λ_i any sequence of length $\mu = \text{cof}(\lambda)$ cofinal in λ.

Proposition (Džamonja-Väänänenen, Dimonte-M.)

The following spaces are homeomorphic (products of length μ are endowed with the $< \mu$-supported product topology):

- λ^2
- $\prod_{i<\mu} \lambda_i$, where each λ_i is discrete;
- $\mu^{(2<\lambda)}$, where $2^{<\lambda}$ is discrete.
Our goal is to study the generalized Cantor space λ^2 when λ is singular. We denote by λ_i a(ny) sequence of length $\mu = \text{cof}(\lambda)$ cofinal in λ.

Proposition (Džamonja-Väänänenen, Dimonte-M.)

The following spaces are homeomorphic (products of length μ are endowed with the $< \mu$-supported product topology):

- λ^2;
Our goal is to study the generalized Cantor space λ^2 when λ is singular. We denote by λ_i any sequence of length $\mu = \text{cof}(\lambda)$ cofinal in λ.

Proposition (Džamonja-Väänänenen, Dimonte-M.)

The following spaces are homeomorphic (products of length μ are endowed with the $< \mu$-supported product topology):

- λ^2;
- $\prod_{i<\mu} 2^{\lambda_i}$, where each 2^{λ_i} is discrete;
Our goal is to study the generalized Cantor space λ^2 when λ is singular. We denote by λ_i any sequence of length $\mu = \text{cof}(\lambda)$ cofinal in λ.

Proposition (Džamonja-Väänänen, Dimonte-M.)

The following spaces are homeomorphic (products of length μ are endowed with the $< \mu$-supported product topology):

- λ^2;
- $\prod_{i<\mu} 2^{\lambda_i}$, where each 2^{λ_i} is discrete;
- $\mu(2^{<\lambda})$, where $2^{<\lambda}$ is discrete.
Dropping the first half of the usual condition

\[\lambda^{<\lambda} = \lambda \quad \equiv \quad \text{cof}(\lambda) = \lambda \quad \text{and} \quad 2^{<\lambda} = \lambda \quad (\dagger) \]

we remain with a singular \(\lambda \) satisfying \(2^{<\lambda} = \lambda \).
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \equiv \text{cof}(\lambda) = \lambda \text{ and } 2^{<\lambda} = \lambda \quad (†)$$

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular strong limit λ.

These very simple observations have lot consequences.
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \quad \equiv \quad \text{cof}(\lambda) = \lambda \quad \text{and} \quad 2^{<\lambda} = \lambda$$ \hspace{1cm} (†)

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular strong limit λ. In this situation, λ^2 still has density λ and the previous result reads as

$$\lambda^2 \approx \prod_{i<\mu} \lambda_i \approx \mu \lambda.$$
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \quad \equiv \quad \text{cof}(\lambda) = \lambda \quad \text{and} \quad 2^{<\lambda} = \lambda \quad \quad (\dagger)$$

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular strong limit λ. In this situation, λ^2 still has density λ and the previous result reads as

$$\lambda^2 \approx \prod_{i<\mu} \lambda_i \approx \mu \lambda.$$

Moreover, in this case $\lambda^2 \not\approx \lambda^\lambda$ because the latter has density $\lambda^{<\lambda} > \lambda$.
(Indeed, λ^2 and λ^λ may even fail to be $(\lambda^+\text{-})\text{Borel isomorphic.}$)
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \quad \equiv \quad \text{cof}(\lambda) = \lambda \quad \text{and} \quad 2^{<\lambda} = \lambda \quad \text{(†)}$$

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular strong limit λ. In this situation, λ^2 still has density λ and the previous result reads as

$$\lambda^2 \approx \prod_{i<\mu} \lambda_i \approx \mu \lambda.$$

Moreover, in this case $\lambda^2 \not\approx \lambda^\lambda$ because the latter has density $\lambda^{<\lambda} > \lambda$.

(Indeed, λ^2 and λ^λ may even fail to be (λ^+-)Borel isomorphic.)

If furthermore $\text{cof}(\lambda) = \omega$, then we get

$$\lambda^2 \approx C(\lambda) \approx B(\lambda).$$
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \equiv \text{cof}(\lambda) = \lambda \text{ and } 2^{<\lambda} = \lambda$$ \hfill (†)

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular strong limit λ. In this situation, λ^2 still has density λ and the previous result reads as

$$\lambda^2 \approx \prod_{i<\mu} \lambda_i \approx \mu \lambda.$$

Moreover, in this case $\lambda^2 \not\approx \lambda^\lambda$ because the latter has density $\lambda^{<\lambda} > \lambda$. (Indeed, λ^2 and λ^λ may even fail to be (λ^+-)Borel isomorphic.)

If furthermore $\text{cof}(\lambda) = \omega$, then we get

$$\lambda^2 \approx C(\lambda) \approx B(\lambda).$$

Thus when λ is strong limit of countable cofinality, the generalized Cantor space λ^2 is a completely metrizable space of density λ, briefly: a λ-Polish space.
The generalized Cantor space λ^2

Dropping the first half of the usual condition

$$\lambda^{<\lambda} = \lambda \equiv \text{cof}(\lambda) = \lambda \text{ and } 2^{<\lambda} = \lambda \quad (\dagger)$$

we remain with a singular λ satisfying $2^{<\lambda} = \lambda$ or, equivalently, with a singular *strong limit* λ. In this situation, λ^2 still has density λ and the previous result reads as

$$\lambda^2 \approx \prod_{i<\mu} \lambda_i \approx \mu \lambda.$$

Moreover, in this case $\lambda^2 \not\approx \lambda^\lambda$ because the latter has density $\lambda^{<\lambda} > \lambda$.

(Indeed, λ^2 and λ^λ may even fail to be (λ^+-)Borel isomorphic.)

If furthermore $\text{cof}(\lambda) = \omega$, then we get

$$\lambda^2 \approx C(\lambda) \approx B(\lambda).$$

Thus when λ is strong limit of countable cofinality, the generalized Cantor space λ^2 is a completely metrizable space of density λ, briefly: a λ-**Polish space**. These very simple observations have lot consequences.
A metric space X is said **uniformly zero-dimensional** if for every $\varepsilon > 0$, every open set of X can be partitioned into *clopen* sets with diameter $< \varepsilon$.

(Uniform zero-dimensionality follows from ultrametrizability and is equivalent to ultraparacompactness.)
The generalized Cantor space λ^2

A metric space X is said **uniformly zero-dimensional** if for every $\varepsilon > 0$, every open set of X can be partitioned into *clopen* sets with diameter $< \varepsilon$.

(Uniform zero-dimensionality follows from ultrametrizability and is equivalent to ultraparacompactness.)

Proposition (Dimonte-M.)

Let $\lambda > \omega$ be strong limit of countable cofinality.
The generalized Cantor space λ^2

A metric space X is said **uniformly zero-dimensional** if for every $\varepsilon > 0$, every open set of X can be partitioned into *clopen* sets with diameter $< \varepsilon$.

(Uniform zero-dimensionality follows from ultrametrizability and is equivalent to ultraparacomactness.)

Proposition (Dimonte-M.)

Let $\lambda > \omega$ be strong limit of countable cofinality.

- λ^2 is universal for uniformly zero-dimensional λ-Polish spaces.

 (A space X is a uniformly zero-dimensional λ-Polish space iff it is homeomorphic to a closed subset of λ^2, iff it admits a compatible complete ultrametric).
The generalized Cantor space λ^2

A metric space X is said **uniformly zero-dimensional** if for every $\varepsilon > 0$, every open set of X can be partitioned into *clopen* sets with diameter $< \varepsilon$.

(Uniform zero-dimensionality follows from ultrametrizability and is equivalent to ultraparacompactness.)

Proposition (Dimonte-M.)

Let $\lambda > \omega$ be strong limit of countable cofinality.

- λ^2 is universal for uniformly zero-dimensional λ-Polish spaces.

 (A space X is a uniformly zero-dimensional λ-Polish space iff it is homeomorphic to a closed subset of λ^2, iff it admits a compatible complete ultrametric.)

- Every closed subset C of a uniformly zero-dimensional λ-Polish space X is a retract of it.

 (There is a continuous surjection $g : X \to C$ with $g \upharpoonright C = \text{id}_C$.)
The generalized Cantor space λ^2

A metric space X is said uniformly zero-dimensional if for every $\varepsilon > 0$, every open set of X can be partitioned into clopen sets with diameter $< \varepsilon$. (Uniform zero-dimensionality follows from ultrametrizability and is equivalent to ultraparacompactness.)

Proposition (Dimonte-M.)

Let $\lambda > \omega$ be strong limit of countable cofinality.

- λ^2 is universal for uniformly zero-dimensional λ-Polish spaces. (A space X is a uniformly zero-dimensional λ-Polish space iff it is homeomorphic to a closed subset of λ^2, iff it admits a compatible complete ultrametric).
- Every closed subset C of a uniformly zero-dimensional λ-Polish space X is a retract of it. (There is a continuous surjection $g: X \to C$ with $g \upharpoonright C = \text{id}_C$.)
- Every nonempty λ-Polish space is a continuous image of λ^2.
Woodin’s approach to the study of $V_{\lambda+1}$ falls in this setup as well. Recall that $V_{\lambda+1}$ is endowed with the topology generated by $O_{a,\alpha} = \{X \in V_{\lambda+1} \mid X \cap V_\alpha = a\}$ for $\alpha < \lambda$ and $a \subseteq V_\alpha$.
The generalized Cantor space λ^2 and Woodin’s $L(V_{\lambda+1})$

Woodin’s approach to the study of $V_{\lambda+1}$ falls in this setup as well. Recall that $V_{\lambda+1}$ is endowed with the topology generated by $O_{a,\alpha} = \{X \in V_{\lambda+1} \mid X \cap V_\alpha = a\}$ for $\alpha < \lambda$ and $a \subseteq V_\alpha$.

Lemma

If $\text{cof}(\lambda) = \omega$ and $\lambda_i \nearrow \lambda$, then

$$V_{\lambda+1} \approx \prod_{i \in \omega} |V_{\lambda_i+1}| \approx \omega \left(\sup_{i \in \omega} \beth_{\lambda_i+1} \right) \approx \omega \left(\beth_\lambda \right).$$
Woodin’s approach to the study of $V_{\lambda+1}$ falls in this setup as well. Recall that $V_{\lambda+1}$ is endowed with the topology generated by $O_{a,\alpha} = \{X \in V_{\lambda+1} \mid X \cap V_\alpha = a\}$ for $\alpha < \lambda$ and $a \subseteq V_\alpha$.

Lemma

If $\text{cof}(\lambda) = \omega$ and $\lambda_i \nearrow \lambda$, then

$$V_{\lambda+1} \approx \prod_{i \in \omega} |V_{\lambda_i+1}| \approx \omega \left(\sup_{i \in \omega} \beth_{\lambda_i+1} \right) \approx \omega \left(\beth_{\lambda} \right).$$

If furthermore λ is limit of inaccessible cardinals (which is the case under $I_0(\lambda)$), then

$$V_{\lambda+1} \approx \prod_{i \in \omega} \lambda_i \approx \omega \lambda \approx \lambda^2.$$
As usual, on λ^2 we consider λ^+-Borel sets.
As usual, on λ^2 we consider λ^+-Borel sets. It can be proven that these sets can be stratified in a hierarchy with exactly λ^+-many levels (if $2^{<\lambda} > \lambda$, a new proof is needed for the non-collapsing part).
As usual, on λ^2 we consider λ^+-Borel sets. It can be proven that these sets can be stratified in a hierarchy with exactly λ^+-many levels (if $2^{<\lambda} > \lambda$, a new proof is needed for the non-collapsing part).

Notice also that if λ is singular then

$$\lambda^+\text{-Borel} = \lambda\text{-Borel}.$$
As usual, on λ^2 we consider $\lambda^+-\text{Borel}$ sets. It can be proven that these sets can be stratified in a hierarchy with exactly λ^+-many levels (if $2^{<\lambda} > \lambda$, a new proof is needed for the non-collapsing part).

Notice also that if λ is singular then

$$\lambda^+-\text{Borel} = \lambda-\text{Borel}.$$

Similar results hold for the generalized Baire space $\lambda\lambda$.
In the classical case, the following conditions (defining **analytic** sets) are equivalent:
In the classical case, the following conditions (defining \textit{analytic} sets) are equivalent:

1. \(A \) is a continuous image of a Polish space.
In the classical case, the following conditions (defining \textit{analytic} sets) are equivalent:

1. A is a continuous image of a Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega \omega$
In the classical case, the following conditions (defining \textit{analytic} sets) are equivalent:

1. A is a continuous image of a Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega\omega$
3. A is a continuous image of a closed $F \subseteq \omega\omega$
In the classical case, the following conditions (defining **analytic** sets) are equivalent:

1. A is a continuous image of a Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega \omega$
3. A is a continuous image of a closed $F^1 \subseteq \omega \omega$
4. A is a continuous/Borel image of a Borel subset of ω^2
In the classical case, the following conditions (defining \textit{analytic} sets) are equivalent:

1. \(A \) is a continuous image of a Polish space
2. \(A = \emptyset \) or \(A \) is a continuous image of \(\omega \omega \)
3. \(A \) is a continuous image of a closed \(F \subseteq \omega \omega \)
4. \(A \) is a continuous/Borel image of a Borel subset of \(\omega^2 \)
5. \(A \) is the projection of a closed subset of \(X \times \omega \omega \).
In the classical case, the following conditions (defining analytic sets) are equivalent:

1. A is a continuous image of a Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega \omega$
3. A is a continuous image of a closed $F \subseteq \omega \omega$
4. A is a continuous/Borel image of a Borel subset of $\omega 2$
5. A is the projection of a closed subset of $X \times \omega \omega$
6. A is the projection of a Borel subset of $X \times \omega 2$.
In the classical case, the following conditions (defining analytic sets) are equivalent:

1. A is a continuous image of a Polish space
2. \(A = \emptyset \) or A is a continuous image of \(\omega \omega \)
3. A is a continuous image of a closed \(F \subseteq \omega \omega \)
4. A is a continuous/Borel image of a Borel subset of \(\omega^2 \)
5. A is the projection of a closed subset of \(X \times \omega \omega \)
6. A is the projection of a Borel subset of \(X \times \omega^2 \).

There are some problems when trying to generalize these equivalences by replacing \(\omega^2 \) and \(\omega \omega \) with \(\kappa^2 \) and \(\kappa^\kappa \), especially when \(\kappa \) is regular.

However...
If $\text{cof}(\lambda) = \omega$ and λ is strong limit, TFAE:

1. A is a continuous image of a λ-Polish space
2. $A = \emptyset$ or A is a continuous image of ω
3. A is a continuous image of a closed $F \subseteq \omega^\lambda$
4. A is a continuous/Borel image of a Borel subset of λ^2
5. A is the projection of a closed subset of $X \times \omega^\lambda$
6. A is the projection of a Borel subset of $X \times \lambda^2$.

This is exactly the notion of a λ-analytic set isolated by Stone.

Remark: One may be tempted to generalize the notion of "analytic" as "continuous image of a closed subset of λ^λ", as in the regular case. However, this would give a much coarser definition, encompassing λ-analytic sets, λ-coanalytic sets, $\Sigma_1^2(\lambda)$ sets, and, under the assumption that $\lambda < \lambda$ is large, also all λ-projective sets.
If \(\text{cof}(\lambda) = \omega \) and \(\lambda \) is strong limit, TFAE:

1. \(A \) is a continuous image of a \(\lambda \)-Polish space
2. \(A = \emptyset \) or \(A \) is a continuous image of \(\omega \lambda \)
3. \(A \) is a continuous image of a closed \(F \subseteq \omega \lambda \)
4. \(A \) is a continuous/Borel image of a Borel subset of \(\lambda^2 \)
5. \(A \) is the projection of a closed subset of \(X \times \omega \lambda \)
6. \(A \) is the projection of a Borel subset of \(X \times \lambda^2 \).

This is exactly the notion of a \(\lambda \)-analytic set isolated by Stone.
If $\text{cof}(\lambda) = \omega$ and λ is strong limit, TFAE:

1. A is a continuous image of a λ-Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega \lambda$
3. A is a continuous image of a closed $F \subseteq \omega \lambda$
4. A is a continuous/Borel image of a Borel subset of λ^2
5. A is the projection of a closed subset of $X \times \omega \lambda$
6. A is the projection of a Borel subset of $X \times \lambda^2$.

This is exactly the notion of a λ-analytic set isolated by Stone.
If $\text{cof}(\lambda) = \omega$ and λ is strong limit, TFAE:

1. A is a continuous image of a λ-Polish space
2. $A = \emptyset$ or A is a continuous image of $\omega\lambda$
3. A is a continuous image of a closed $F \subseteq \omega\lambda$
4. A is a continuous/Borel image of a Borel subset of λ^2
5. A is the projection of a closed subset of $X \times \omega\lambda$
6. A is the projection of a Borel subset of $X \times \lambda^2$.

This is exactly the notion of a λ-analytic set isolated by Stone.

Remark: One may be tempted to generalize the notion of “analytic” as “continuous image of a closed subset of $\lambda\lambda$”, as in the regular case.
λ-Analytic sets

If \(\text{cof}(\lambda) = \omega \) and \(\lambda \) is strong limit, TFAE:

1. \(A \) is a continuous image of a \(\lambda \)-Polish space
2. \(A = \emptyset \) or \(A \) is a continuous image of \(\omega \lambda \)
3. \(A \) is a continuous image of a closed \(F \subseteq \omega \lambda \)
4. \(A \) is a continuous/Borel image of a Borel subset of \(\lambda^2 \)
5. \(A \) is the projection of a closed subset of \(X \times \omega \lambda \)
6. \(A \) is the projection of a Borel subset of \(X \times \lambda^2 \).

This is exactly the notion of a \(\lambda \)-analytic set isolated by Stone.

Remark: One may be tempted to generalize the notion of “analytic” as “continuous image of a closed subset of \(\lambda \lambda \)”, as in the regular case. However, this would give a much coarser definition, encompassing \(\lambda \)-analytic sets, \(\lambda \)-coanalytic sets, \(\Sigma^1_2(\lambda) \) sets, and, under the assumption that \(\lambda^{<\lambda} \) is large, also all \(\lambda \)-projective sets.
Assume again that \(\lambda \) is strong limit with countable cofinality.
Assume again that λ is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all λ-analytic sets (properly) contain the $\lambda^{(+)}$-Borel ones.
Assume again that λ is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all λ-analytic sets (properly) contain the $\lambda^{(+)}$-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)

If A, B are disjoint analytic subsets of a λ-Polish space, then A can be separated from B by a λ-Borel set.
Assume again that λ is strong limit with countable cofinality.

Proposition (Dimonte-M.)
The collection of all λ-analytic sets (properly) contain the $\lambda^{(+)}$-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)
If A, B are disjoint analytic subsets of a λ-Polish space, then A can be separated from B by a λ-Borel set.

Generalized Souslin’s theorem (Dimonte-M.)
A subsets of a λ-Polish space is λ-bianalytic iff it is $\lambda^{(+)}$-Borel.
Assume again that \(\lambda \) is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all \(\lambda \)-analytic sets (properly) contain the \(\lambda^{(+)} \)-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)

If \(A, B \) are disjoint analytic subsets of a \(\lambda \)-Polish space, then \(A \) can be separated from \(B \) by a \(\lambda \)-Borel set.

Generalized Souslin’s theorem (Dimonte-M.)

A subsets of a \(\lambda \)-Polish space is \(\lambda \)-bianalytic iff it is \(\lambda^{(+)} \)-Borel.

This has many consequences:
Assume again that \(\lambda \) is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all \(\lambda \)-analytic sets (properly) contain the \(\lambda^{(+)} \)-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)

If \(A, B \) are disjoint analytic subsets of a \(\lambda \)-Polish space, then \(A \) can be separated from \(B \) by a \(\lambda \)-Borel set.

Generalized Souslin’s theorem (Dimonte-M.)

A subsets of a \(\lambda \)-Polish space is \(\lambda \)-bianalytic iff it is \(\lambda^{(+)} \)-Borel.

This has many consequences:

- a function is \(\lambda \)-Borel iff its graph is \(\lambda \)-analytic, iff its graph is \(\lambda \)-Borel;
λ-analytic vs λ-Borel

Assume again that λ is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all λ-analytic sets (properly) contain the λ^(+)-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)

If A, B are disjoint analytic subsets of a λ-Polish space, then A can be separated from B by a λ-Borel set.

Generalized Souslin’s theorem (Dimonte-M.)

A subsets of a λ-Polish space is λ-bianalytic iff it is λ^(+)-Borel.

This has many consequences:

- a function is λ-Borel iff its graph is λ-analytic, iff its graph is λ-Borel;
- the injective λ-Borel image of a λ-Borel set is still λ-Borel;
Assume again that λ is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all λ-analytic sets (properly) contain the $\lambda^{(+)}$-Borel ones.

Generalized Lusin’s separation theorem (Dimonte-M.)

If A, B are disjoint analytic subsets of a λ-Polish space, then A can be separated from B by a λ-Borel set.

Generalized Souslin’s theorem (Dimonte-M.)

A subsets of a λ-Polish space is λ-bianalytic iff it is $\lambda^{(+)}$-Borel.

This has many consequences:

- a function is λ-Borel iff its graph is λ-analytic, iff its graph is λ-Borel;
- the injective λ-Borel image of a λ-Borel set is still λ-Borel;
- ...
Definition

A subset A of a topological space X has the λ-PSP if either $|A| \leq \lambda$, or else λ^2 topologically embeds into A.

Similarly to the classical case

Theorem (essentially A. H. Stone)

Let λ be strong limit of countable cofinality. Every λ-analytic subset of a uniformly zero-dimensional λ-Polish space has the λ-PSP.

What for more complicated sets?

Motivated by the fact that, in the classical context, κ-homogeneously Souslin sets have the PSP (and inspired by Woodin's notion of $U(j)$-representability), we developed the following machinery.

L. Motto Ros (Turin, Italy)
Definition

A subset \(A \) of a topological space \(X \) has the \(\lambda \)-PSP if either \(|A| \leq \lambda \), or else \(\lambda^2 \) topologically embeds into \(A \).

Theorem (essentially A. H. Stone)

Let \(\lambda \) be strong limit of countable cofinality. Every \(\lambda \)-analytic subset of a uniformly zero-dimensional \(\lambda \)-Polish space has the \(\lambda \)-PSP.
Definition
A subset A of a topological space X has the λ-PSP if either $|A| \leq \lambda$, or else λ^2 topologically embeds into A.

Similarly to the classical case

Theorem (essentially A. H. Stone)
Let λ be strong limit of countable cofinality. Every λ-analytic subset of a uniformly zero-dimensional λ-Polish space has the λ-PSP.

What for more complicated sets?
Definition

A subset A of a topological space X has the λ-PSP if either $|A| \leq \lambda$, or else λ^2 topologically embeds into A.

Similarly to the classical case

Theorem (essentially A. H. Stone)

Let λ be strong limit of countable cofinality. Every λ-analytic subset of a uniformly zero-dimensional λ-Polish space has the λ-PSP.

What for more complicated sets?

Motivated by the fact that, in the classical context, κ-homogeneously Souslin sets have the PSP (and inspired by Woodin’s notion of $U(j)$-representability), we developed the following machinery.
(\mathbb{U}, \kappa)-representable sets

Definition

A family \(\mathbb{U} \) of ultrafilters is **orderly** iff there exists a set \(K \) such that for all \(\mathcal{U} \in \mathbb{U} \) there is \(n \in \omega \) for which \({}^nK \in \mathcal{U} \). Such an \(n \) is called the **level** of \(\mathcal{U} \).
(\mathbb{U}, \kappa)-representable sets

Definition

A family \(\mathbb{U} \) of ultrafilters is **orderly** iff there exists a set \(K \) such that for all \(\mathcal{U} \in \mathbb{U} \) there is \(n \in \omega \) for which \(nK \in \mathcal{U} \). Such an \(n \) is called the **level** of \(\mathcal{U} \).

A **tower** of ultrafilters in such a \(\mathbb{U} \) is a sequence \((\mathcal{U}_i)_{i \in \omega} \) such that for all \(m < n < \omega \):

- \(\mathcal{U}_n \in \mathbb{U} \) has level \(n \);
- \(\mathcal{U}_n \) projects to \(\mathcal{U}_m \), i.e. for each \(A \subseteq mK \) we have
 \[
 A \in \mathcal{U}_m \iff \{ s \in nK \mid s \upharpoonright m \in A \} \in \mathcal{U}_n.
 \]
A family \mathcal{U} of ultrafilters is **orderly** iff there exists a set K such that for all $\mathcal{U} \in \mathcal{U}$ there is $n \in \omega$ for which $^nK \in \mathcal{U}$. Such an n is called the **level** of \mathcal{U}.

A **tower** of ultrafilters in such a \mathcal{U} is a sequence $(\mathcal{U}_i)_{i \in \omega}$ such that for all $m < n < \omega$:

- $\mathcal{U}_n \in \mathcal{U}$ has level n;
- \mathcal{U}_n **projects** to \mathcal{U}_m, i.e. for each $A \subseteq {}^mK$ we have

$$A \in \mathcal{U}_m \iff \{ s \in {}^nK \mid s \upharpoonright m \in A \} \in \mathcal{U}_n.$$

A tower of ultrafilters $(\mathcal{U}_i)_{i \in \omega}$ is **well-founded** iff for every sequence $(A_i)_{i \in \omega}$ with $A_i \in \mathcal{U}_i$ there is $z \in {}^\omega K$ such that $z \upharpoonright i \in A_i$ for all $i \in \omega$.

Definition

A family \mathcal{U} of ultrafilters is **orderly** iff there exists a set K such that for all $\mathcal{U} \in \mathcal{U}$ there is $n \in \omega$ for which $^nK \in \mathcal{U}$. Such an n is called the **level** of \mathcal{U}.

A **tower** of ultrafilters in such a \mathcal{U} is a sequence $(\mathcal{U}_i)_{i \in \omega}$ such that for all $m < n < \omega$:

- $\mathcal{U}_n \in \mathcal{U}$ has level n;
- \mathcal{U}_n **projects** to \mathcal{U}_m, i.e. for each $A \subseteq {}^mK$ we have

$$A \in \mathcal{U}_m \iff \{ s \in {}^nK \mid s \upharpoonright m \in A \} \in \mathcal{U}_n.$$

A tower of ultrafilters $(\mathcal{U}_i)_{i \in \omega}$ is **well-founded** iff for every sequence $(A_i)_{i \in \omega}$ with $A_i \in \mathcal{U}_i$ there is $z \in {}^\omega K$ such that $z \upharpoonright i \in A_i$ for all $i \in \omega$.

L. Motto Ros (Turin, Italy)
From now on λ is strong limit with $\text{cof}(\lambda) = \omega$, and $\lambda_i \uparrow \lambda$.

Remark 1: If $\lambda = \omega$ and $A \subseteq \omega^\omega$ is κ-weakly homogenously Souslin, then A is (U, κ)-representable for a suitable orderly family of ultrafilters U.

Remark 2: Exploiting the natural homeomorphism between $V_{\lambda + 1}$ and ω^λ the above definition yields Woodin's $U(j)$-representability when $\kappa = \lambda^+$ and U is a certain family of ultrafilters usually denoted by $U(j, \kappa, (\alpha_i)_{i \in \omega})$.

(U, κ)-representable sets
(\mathbb{U}, \kappa)$-representable sets

From now on \(\lambda \) is strong limit with \(\text{cof}(\lambda) = \omega \), and \(\lambda_i \nearrow \lambda \).

Definition

Let \(\kappa \geq \lambda \) be a cardinal, and let \(\mathbb{U} \) be an orderly family of \(\kappa \)-complete ultrafilters.

Remark 1: If \(\lambda = \omega \) and \(A \subseteq \omega^\omega \) is \(\kappa \)-weakly homogenously Souslin, then \(A \) is \((\mathbb{U}, \kappa) \)-representable for a suitable orderly family of ultrafilters.

Remark 2: Exploiting the natural homeomorphism between \(V^{\lambda+1} \) and \(\omega^\lambda \) the above definition yields Woodin's \(U_j \)-representability when \(\kappa = \lambda^+ \) and \(\mathbb{U} \) is a certain family of ultrafilters usually denoted by \(U(j, \kappa, (a_i)_{i \in \omega}) \).
(\mathbb{U}, \kappa)-representable sets

From now on \(\lambda \) is strong limit with \(\text{cof}(\lambda) = \omega \), and \(\lambda_i \uparrow \lambda \).

Definition

Let \(\kappa \geq \lambda \) be a cardinal, and let \(\mathbb{U} \) be an orderly family of \(\kappa \)-complete ultrafilters. A \((\mathbb{U}, \kappa)\)-representation for \(Z \subseteq \omega \lambda \) is a function \(\pi: \bigcup_{i \in \omega} i \lambda \times i \lambda \rightarrow \mathbb{U} \) such that:

1. If \(s, t \in i \lambda \), then \(\pi(s, t) \) has level \(i \).
2. For any \((s, t) \in n \lambda \) if \((s', t') \sqsubseteq (s, t) \) then \(\pi(s', t') \) projects to \(\pi(s, t) \).
3. \(x \in Z \) iff there is \(y \in \omega \lambda \) s.t. \((\pi(x \upharpoonright i, y \upharpoonright i)) i \in \omega \) is well-founded.

Remark 1: If \(\lambda = \omega \) and \(A \subseteq \omega \omega \) is \(\kappa \)-weakly homogenously Souslin, then \(A \) is \((\mathbb{U}, \kappa)\)-representable for a suitable orderly family of ultrafilters \(\mathbb{U} \).

Remark 2: Exploiting the natural homeomorphism between \(V^{\lambda+1} \) and \(\omega \lambda \) the above definition yields Woodin's \(U(\mathbf{j}) \)-representability when \(\kappa = \lambda + \) and \(\mathbb{U} \) is a certain family of ultrafilters usually denoted by \(U(\mathbf{j}, \kappa, (a_i)_{i \in \omega}) \).
From now on λ is strong limit with $\text{cof}(\lambda) = \omega$, and $\lambda_i \uparrow \lambda$.

Definition

Let $\kappa \geq \lambda$ be a cardinal, and let \mathbb{U} be an orderly family of κ-complete ultrafilters. A (\mathbb{U}, κ)-representation for $Z \subseteq \omega \lambda$ is a function $\pi : \bigcup_{i\in\omega} i \lambda \times i \lambda \to \mathbb{U}$ such that:

- if $s, t \in i \lambda$, then $\pi(s, t)$ has level i;
From now on λ is strong limit with $\text{cof}(\lambda) = \omega$, and $\lambda_i \uparrow \lambda$.

Definition

Let $\kappa \geq \lambda$ be a cardinal, and let U be an orderly family of κ-complete ultrafilters. A (U, κ)-representation for $Z \subseteq \omega^{\lambda}$ is a function $\pi: \bigcup_{i \in \omega} i \lambda \times i \lambda \rightarrow U$ such that:

- if $s, t \in i \lambda$, then $\pi(s, t)$ has level i;
- for any $(s, t) \in n \lambda$ if $(s', t') \supseteq (s, t)$ then $\pi(s', t')$ projects to $\pi(s, t)$;
(\mathbb{U}, \kappa)-representable sets

From now on \(\lambda \) is strong limit with \(\text{cof}(\lambda) = \omega \), and \(\lambda_i \uparrow \lambda \).

Definition

Let \(\kappa \geq \lambda \) be a cardinal, and let \(\mathbb{U} \) be an orderly family of \(\kappa \)-complete ultrafilters. A \((\mathbb{U}, \kappa)\)-representation for \(Z \subseteq \omega \lambda \) is a function \(\pi: \bigcup_{i \in \omega} i^\lambda \times i^\lambda \rightarrow \mathbb{U} \) such that:

- if \(s, t \in i^\lambda \), then \(\pi(s, t) \) has level \(i \);
- for any \((s, t) \in n^\lambda \) if \((s', t') \supseteq (s, t) \) then \(\pi(s', t') \) projects to \(\pi(s, t) \);
- \(x \in Z \) iff there is \(y \in \omega \lambda \) s.t. \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega} \) is well-founded.

Remark 1: If \(\lambda = \omega \) and \(A \subseteq \omega \omega \) is \(\kappa \)-weakly homogenously Souslin, then \(A \) is \((\mathbb{U}, \kappa)\)-representable for a suitable orderly family of ultrafilters \(\mathbb{U} \).

Remark 2: Exploiting the natural homeomorphism between \(V_{\lambda+1} \) and \(\omega \lambda \) the above definition yields Woodin’s \(U(j) \)-representability when \(\kappa = \lambda + \) and \(\mathbb{U} \) is a certain family of ultrafilters usually denoted by \(U(j, \kappa, (a_i)_{i \in \omega}) \).
(U, \kappa)-representable sets

From now on \(\lambda \) is strong limit with \(\text{cof}(\lambda) = \omega \), and \(\lambda_i \nearrow \lambda \).

Definition

Let \(\kappa \geq \lambda \) be a cardinal, and let \(U \) be an orderly family of \(\kappa \)-complete ultrafilters. A \((U, \kappa) \)-representation for \(Z \subseteq \omega \lambda \) is a function
\[
\pi : \bigcup_{i \in \omega} i \lambda \times i \lambda \rightarrow U
\]
such that:

- if \(s, t \in i \lambda \), then \(\pi(s, t) \) has level \(i \);
- for any \((s, t) \in n \lambda \) if \((s', t') \supseteq (s, t) \) then \(\pi(s', t') \) projects to \(\pi(s, t) \);
- \(x \in Z \) iff there is \(y \in \omega \lambda \) s.t. \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega} \) is well-founded.

Remark 1: If \(\lambda = \omega \) and \(A \subseteq \omega \omega \) is \(\kappa \)-weakly homogenously Souslin, then \(A \) is \((U, \kappa) \)-representable for a suitable orderly family of ultrafilters \(U \).
(\(\mathbb{U}, \kappa\))-representable sets

From now on \(\lambda\) is strong limit with \(\text{cof}(\lambda) = \omega\), and \(\lambda_i \nearrow \lambda\).

Definition

Let \(\kappa \geq \lambda\) be a cardinal, and let \(\mathbb{U}\) be an orderly family of \(\kappa\)-complete ultrafilters. A \((\mathbb{U}, \kappa)\)-representation for \(Z \subseteq \omega\lambda\) is a function \(\pi: \bigcup_{i \in \omega} i\lambda \times i\lambda \to \mathbb{U}\) such that:

- if \(s, t \in i\lambda\), then \(\pi(s, t)\) has level \(i\);
- for any \((s, t) \in n\lambda\) if \((s', t') \supseteq (s, t)\) then \(\pi(s', t')\) projects to \(\pi(s, t)\);
- \(x \in Z\) iff there is \(y \in \omega\lambda\) s.t. \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega}\) is well-founded.

Remark 1: If \(\lambda = \omega\) and \(A \subseteq \omega\omega\) is \(\kappa\)-weakly homogenously Souslin, then \(A\) is \((\mathbb{U}, \kappa)\)-representable for a suitable orderly family of ultrafilters \(\mathbb{U}\).

Remark 2: Exploiting the natural homeomorphism between \(V_{\lambda+1}\) and \(\omega\lambda\) the above definition yields Woodin’s \(U(j)\)-representability when \(\kappa = \lambda^+\) and \(\mathbb{U}\) is a certain family of ultrafilters usually denoted by \(\mathbb{U}(j, \kappa, (a_i)_{i \in \omega})\).
The following condition turns out to be very helpful when checking well-foundness of towers of ultrafilters.

Definition

A \((U, \kappa)\)-representation \(\pi\) for a set \(Z \subseteq \omega \lambda\) has the **tower condition** if there exists \(F: \text{ran}\(\pi\) \to \bigcup U\) such that:

- \(F(U) \in U\) for all \(U \in \text{ran}(\pi)\);
- for every \(x, y \in \omega \lambda\), the tower of ultrafilters \((\pi(x) \restriction i, \pi(y) \restriction i)\) \(i \in \omega\) is well-founded iff there is \(z \in \omega K\) such that \(z \restriction i \in F(\pi(x) \restriction i, \pi(y) \restriction i)\) for all \(i \in \omega\).
The following condition turns out to be very helpful when checking well-foundness of towers of ultrafilters.

Definition

A \((U, \kappa)\)-representation \(\pi\) for a set \(Z \subseteq \omega \lambda\) has the **tower condition** if there exists \(F: \text{ran}\ \pi \to \bigcup U\) such that:

1. \(F(U) \in U\) for all \(U \in \text{ran}(\pi)\);
Tower condition

The following condition turns out to be very helpful when checking well-foundedness of towers of ultrafilters.

Definition

A \((U, \kappa)\)-representation \(\pi\) for a set \(Z \subseteq \omega \lambda\) has the **tower condition** if there exists \(F : \text{ran} \pi \to \bigcup U\) such that:

- \(F(U) \in U\) for all \(U \in \text{ran}(\pi)\);
- for every \(x, y \in \omega \lambda\), the tower of ultrafilters \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega}\) is well-founded iff there is \(z \in \omega K\) such that \(z \upharpoonright i \in F(\pi(x \upharpoonright i, y \upharpoonright i))\) for all \(i \in \omega\).

Remark 1: When \(\lambda = \omega\), the tower condition automatically follows from the \(\kappa\)-weakly homogeneously Souslin condition whenever \(\kappa > 2^{\aleph_0}\).

Remark 2: Woodin has an analogous notion of "tower condition" in the context of \(U(j)\)-representability.

Cramer later proved that if \(I_0(\lambda)\) holds, then all \(U(j)\)-representable sets in \(P(V_\lambda + 1) \cap L(V_\lambda + 1)\) admit in fact a \(U(j)\)-representation with the tower condition.

L. Motto Ros (Turin, Italy)
Tower condition

The following condition turns out to be very helpful when checking well-foundedness of towers of ultrafilters.

Definition

A (\mathcal{U}, κ)-representation π for a set $Z \subseteq \omega \times \lambda$ has the **tower condition** if there exists $F: \text{ran} \pi \to \bigcup \mathcal{U}$ such that:

- $F(\mathcal{U}) \in \mathcal{U}$ for all $\mathcal{U} \in \text{ran}(\pi)$;
- for every $x, y \in \omega \times \lambda$, the tower of ultrafilters $(\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega}$ is well-founded iff there is $z \in \omega \times K$ such that $z \upharpoonright i \in F(\pi(x \upharpoonright i, y \upharpoonright i))$ for all $i \in \omega$.

Remark 1: When $\lambda = \omega$, the tower condition automatically follows from the κ-weakly homogeneously Souslin condition whenever $\kappa > 2^{\aleph_0}$.
Tower condition

The following condition turns out to be very helpful when checking well-foundness of towers of ultrafilters.

Definition

A \((U, \kappa) \)-representation \(\pi \) for a set \(Z \subseteq \omega \lambda \) has the **tower condition** if there exists \(F: \text{ran} \pi \rightarrow \bigcup U \) such that:

- \(F(U) \in U \) for all \(U \in \text{ran}(\pi) \);
- for every \(x, y \in \omega \lambda \), the tower of ultrafilters \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega} \) is well-founded iff there is \(z \in \omega K \) such that \(z \upharpoonright i \in F(\pi(x \upharpoonright i, y \upharpoonright i)) \) for all \(i \in \omega \).

Remark 1: When \(\lambda = \omega \), the tower condition automatically follows from the \(\kappa \)-weakly homogeneously Souslin condition whenever \(\kappa > 2^{\aleph_0} \).

Remark 2: Woodin has an analogous notion of “tower condition” in the context of \(U(j) \)-representability.
Tower condition

The following condition turns out to be very helpful when checking well-foundedness of towers of ultrafilters.

Definition

A \((U, \kappa)\)-representation \(\pi\) for a set \(Z \subseteq \omega \lambda\) has the **tower condition** if there exists \(F : \text{ran} \pi \to \bigcup U\) such that:

- \(F(U) \in U\) for all \(U \in \text{ran}(\pi)\);
- for every \(x, y \in \omega \lambda\), the tower of ultrafilters \((\pi(x \upharpoonright i, y \upharpoonright i))_{i \in \omega}\) is well-founded iff there is \(z \in \omega K\) such that \(z \upharpoonright i \in F(\pi(x \upharpoonright i, y \upharpoonright i))\) for all \(i \in \omega\).

Remark 1: When \(\lambda = \omega\), the tower condition automatically follows from the \(\kappa\)-weakly homogeneously Souslin condition whenever \(\kappa > 2^{\aleph_0}\).

Remark 2: Woodin has an analogous notion of “tower condition” in the context of \(U(j)\)-representability. Cramer later proved that if \(I_0(\lambda)\) holds, then all \(U(j)\)-representable sets in \(\mathcal{P}(V_{\lambda+1}) \cap L(V_{\lambda+1})\) admit in fact a \(U(j)\)-representation with the tower condition.
The main theorem

Here is our main theorem in this direction.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega^\lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Unlike Shi’s and Cramer’s proofs, we just use an adaptation of classical ideas involving games to the new more general setup.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (\mathcal{U}, κ)-representation with the tower condition, then Z has the λ-PSP.

Unlike Shi’s and Cramer’s proofs, we just use an adaptation of classical ideas involving games to the new more general setup.

Corollary

Assume $I_0(\lambda)$, as witnessed by j. If $A \in \mathcal{P}(V_{\lambda+1}) \cap L(V_{\lambda+1})$ is $U(j)$-representable, then A has the λ-PSP.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Unlike Shi’s and Cramer’s proofs, we just use an adaptation of classical ideas involving games to the new more general setup.

Corollary

Assume $I^0(\lambda)$, as witnessed by j. If $A \in \mathcal{P}(V_{\lambda+1}) \cap L(V_{\lambda+1})$ is $U(j)$-representable, then A has the λ-PSP.

Corollary

Assume $I^0(\lambda)$. All λ-projective subsets of any uniformly zero-dimensional λ-Polish space have the λ-PSP.
The main theorem

Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (\mathbb{U}, κ)-representation with the tower condition, then Z has the λ-PSP.

Unlike Shi’s and Cramer’s proofs, we just use an adaptation of classical ideas involving games to the new more general setup.

Corollary

Assume $\Pi_0(\lambda)$, as witnessed by j. If $A \in \mathcal{P}(V_{\lambda+1}) \cap L(V_{\lambda+1})$ is $U(j)$-representable, then A has the λ-PSP.

Corollary

Assume $\Pi_0(\lambda)$. All λ-projective subsets of any uniformly zero-dimensional λ-Polish space have the λ-PSP.
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof.
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (U, κ)-representation for Z with the tower condition, as witnessed by F.
Proof of the main theorem

Theorem (Dimonte-M.)

Let \(\lambda \) be strong limit with \(\text{cof}(\lambda) = \omega \), and let \(\kappa \geq \lambda \) be a cardinal. If \(Z \subseteq \omega \lambda \) admits a \((U, \kappa)\)-representation with the tower condition, then \(Z \) has the \(\lambda \)-PSP.

Proof. Let \(\pi \) be a \((U, \kappa)\)-representation for \(Z \) with the tower condition, as witnessed by \(F \). Let \(G(Z) \) (or rather \(G(\pi, F) \)) be the game

\[
\begin{array}{c|c|c|c|c}
I & & & & \\
\hline
II & & & & \\
\end{array}
\]
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (U, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

<table>
<thead>
<tr>
<th></th>
<th>$(s^0_i, t^0_i)_{i<\lambda_0}$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $s^k_i, t^k_i \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s^k_i \neq s^k_{i'}$ if $i \neq i'$;
Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (\mathbb{U}, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (\mathbb{U}, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

\[
\begin{array}{c|cc}
I & (s^0_i, t^0_i)_{i<\lambda_0} & \\
II & i_0 & \\
\end{array}
\]

- $s^k_i, t^k_i \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s^k_i \neq s^k_{i'}$ if $i \neq i'$;
- $i_k < \lambda_k$;
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (U, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

I \quad $\begin{array}{c|c|c}
(s_i^0, t_i^0)_{i<\lambda^0} & z_0, \\
i_0
\end{array}$

$\begin{array}{c|c|c}
\hline
\text{II} & \text{I win if she can play for infinitely many turns.}
\end{array}$

- $s_i^k, t_i^k \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s_i^k \neq s_i^{k'}$ if $i \neq i'$;
- $i_k < \lambda_k$;
- $z_k \in F(\pi(s_i^k, t_i^k))$;
Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega\lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (U, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

<table>
<thead>
<tr>
<th></th>
<th>$(s_i^0, t_i^0)_{i<\lambda_0}$</th>
<th>$z_0, (s_i^1, t_i^1)_{i<\lambda_1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>i_0</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $s_i^k, t_i^k \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s_i^k \neq s_{i'}^k$ if $i \neq i'$;
- $i_k < \lambda_k$;
- $z_k \in F(\pi(s_i^k, t_i^k))$;
- $s_i^{k+1} \sqsupset s_i^k$ and $t_i^{k+1} \sqsupset t_i^k$ for all $i < \lambda_{k+1}$, and $z_{k+1} \sqsupset z_k$.

L. Motto Ros (Turin, Italy)
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be a strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (U, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (U, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

<table>
<thead>
<tr>
<th>I</th>
<th>$(s_i^0, t_i^0)_{i < \lambda_0}$</th>
<th>$z_0, (s_i^1, t_i^1)_{i < \lambda_1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>i_0</td>
<td>i_1</td>
</tr>
</tbody>
</table>

- $s_i^k, t_i^k \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s_i^k \neq s_{i'}^k$ if $i \neq i'$;
- $i_k < \lambda_k$;
- $z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k))$;
- $s_i^{k+1} \sqsupset s_i^k$ and $t_i^{k+1} \sqsupset t_i^k$ for all $i < \lambda_{k+1}$, and $z_{k+1} \sqsupset z_k$.

L. Motto Ros (Turin, Italy)
Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (\mathcal{U}, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (\mathcal{U}, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

\[
\begin{array}{c|c|c|c}
I & (s^0_i, t^0_i)_{i < \lambda_0} & z_0, (s^1_i, t^1_i)_{i < \lambda_1} & z_1, \\
II & i_0 & i_1 & \\
\end{array}
\]

- $s^k_i, t^k_i \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s^k_i \neq s^k_i'$ if $i \neq i'$;
- $i_k < \lambda_k$;
- $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$;
- $s^{k+1}_i \mathrel{\Box} s^k_{i_k}$ and $t^{k+1}_i \mathrel{\Box} t^k_{i_k}$ for all $i < \lambda_{k+1}$, and $z_{k+1} \mathrel{\Box} z_k$.
Proof of the main theorem

Theorem (Dimonte-M.)

Let \(\lambda \) be strong limit with \(\text{cof}(\lambda) = \omega \), and let \(\kappa \geq \lambda \) be a cardinal. If \(Z \subseteq \omega \lambda \) admits a \((U, \kappa)\)-representation with the tower condition, then \(Z \) has the \(\lambda \)-PSP.

Proof. Let \(\pi \) be a \((U, \kappa)\)-representation for \(Z \) with the tower condition, as witnessed by \(F \). Let \(G(Z) \) (or rather \(G(\pi, F) \)) be the game

\[
\begin{array}{|c|c|c|}
\hline
& (s^0_i, t^0_i)_{i < \lambda^0} & z_0, (s^1_i, t^1_i)_{i < \lambda^1} \\hline
I & s^0_i & z_0, (s^1_i, t^1_i)_{i < \lambda^1} \\hline
II & i_0 & i_1 \\hline
& (s^2_i, t^2_i)_{i < \lambda^2} & z_1, (s^2_i, t^2_i)_{i < \lambda^2} \\hline
\end{array}
\]

- \(s^k_i, t^k_i \in j_k \mu_k \) for some \(\mu_k < \lambda \) and \(j_k \in \omega \), with \(s^k_i \neq s^k_{i'} \) if \(i \neq i' \);
- \(i_k < \lambda_k \);
- \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \);
- \(s^k_{i+1} \sqsupset s^k_{i_k} \) and \(t^k_{i+1} \sqsupset t^k_{i_k} \) for all \(i < \lambda_{k+1} \), and \(z_{k+1} \sqsupset z_k \).
Proof of the main theorem

Theorem (Dimonte-M.)

Let \(\lambda \) be strong limit with \(\text{cof}(\lambda) = \omega \), and let \(\kappa \geq \lambda \) be a cardinal. If \(Z \subseteq \omega \lambda \) admits a \((U, \kappa)\)-representation with the tower condition, then \(Z \) has the \(\lambda \)-PSP.

Proof. Let \(\pi \) be a \((U, \kappa)\)-representation for \(Z \) with the tower condition, as witnessed by \(F \). Let \(G(Z) \) (or rather \(G(\pi, F) \)) be the game

\[

\begin{array}{c|c|c|c}
\text{I} & (s^0_i, t^0_i)_{i<\lambda_0} & z_0, (s^1_i, t^1_i)_{i<\lambda_1} & z_1, (s^2_i, t^2_i)_{i<\lambda_2} \\
\hline
\text{II} & i_0 & i_1 & i_2 \\
\end{array}

\]

- \(s^k_i, t^k_i \in j_k \mu_k \) for some \(\mu_k < \lambda \) and \(j_k \in \omega \), with \(s^k_i \neq s^k_{i'} \) if \(i \neq i' \);
- \(i_k < \lambda_k \);
- \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \);
- \(s^k_{i+1} \triangleleft s^k_{i_k} \) and \(t^k_{i+1} \triangleleft t^k_{i_k} \) for all \(i < \lambda_{k+1} \), and \(z_{k+1} \triangleleft z_k \).
Theorem (Dimonte-M.)

Let \(\lambda \) be strong limit with \(\text{cof}(\lambda) = \omega \), and let \(\kappa \geq \lambda \) be a cardinal. If \(Z \subseteq \omega \lambda \) admits a \((U, \kappa)\)-representation with the tower condition, then \(Z \) has the \(\lambda \)-PSP.

Proof. Let \(\pi \) be a \((U, \kappa)\)-representation for \(Z \) with the tower condition, as witnessed by \(F \). Let \(G(Z) \) (or rather \(G(\pi, F) \)) be the game

<table>
<thead>
<tr>
<th></th>
<th>((s^0_i, t^0_i)_{i<\lambda})</th>
<th>(z_0, (s^{1}_i, t^{1}i){i<\lambda})</th>
<th>(z_1, (s^{2}_i, t^{2}i){i<\lambda})</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(s^k_i, t^k_i \in j_k \mu_k \) for some \(\mu_k < \lambda \) and \(j_k \in \omega \), with \(s^k_i \neq s^{k'}_{i'} \) if \(i \neq i' \);
- \(i_k < \lambda_k \);
- \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \);
- \(s^{k+1}_i \sqsupseteq s^k_{i_k} \) and \(t^{k+1}_i \sqsupseteq t^k_{i_k} \) for all \(i < \lambda_{k+1} \), and \(z_{k+1} \sqsupseteq z_k \).
Proof of the main theorem

Theorem (Dimonte-M.)

Let \(\lambda \) be a strong limit with \(\text{cof}(\lambda) = \omega \), and let \(\kappa \geq \lambda \) be a cardinal. If \(Z \subseteq \omega \lambda \) admits a \((U, \kappa)\)-representation with the tower condition, then \(Z \) has the \(\lambda \)-PSP.

Proof. Let \(\pi \) be a \((U, \kappa)\)-representation for \(Z \) with the tower condition, as witnessed by \(F \). Let \(G(Z) \) (or rather \(G(\pi, F) \)) be the game

<table>
<thead>
<tr>
<th>I</th>
<th>((s^0_i, t^0_i)_{i < \lambda_0})</th>
<th>(z_0, (s^1_i, t^1_i)_{i < \lambda_1})</th>
<th>(z_1, (s^2_i, t^2_i)_{i < \lambda_2})</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
<td>...</td>
</tr>
</tbody>
</table>

- \(s^k_i, t^k_i \in j_k \mu_k\) for some \(\mu_k < \lambda \) and \(j_k \in \omega \), with \(s^k_i \neq s^k_{i'} \) if \(i \neq i' \);
- \(i_k < \lambda_k\);
- \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))\);
- \(s^{k+1}_i \sqsupseteq s^k_{i_k}\) and \(t^{k+1}_i \sqsupseteq t^k_{i_k}\) for all \(i < \lambda_{k+1} \), and \(z_{k+1} \sqsupseteq z_k\).
Proof of the main theorem

Theorem (Dimonte-M.)

Let λ be strong limit with $\text{cof}(\lambda) = \omega$, and let $\kappa \geq \lambda$ be a cardinal. If $Z \subseteq \omega \lambda$ admits a (\mathbb{U}, κ)-representation with the tower condition, then Z has the λ-PSP.

Proof. Let π be a (\mathbb{U}, κ)-representation for Z with the tower condition, as witnessed by F. Let $G(Z)$ (or rather $G(\pi, F)$) be the game

<table>
<thead>
<tr>
<th>I</th>
<th>$(s^0_i, t^0_i)_{i < \lambda_0}$</th>
<th>$z_0, (s^1_i, t^1_i)_{i < \lambda_1}$</th>
<th>$z_1, (s^2_i, t^2_i)_{i < \lambda_2}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>i_0</td>
<td>i_1</td>
<td>i_2</td>
<td>...</td>
</tr>
</tbody>
</table>

- $s^k_i, t^k_i \in j_k \mu_k$ for some $\mu_k < \lambda$ and $j_k \in \omega$, with $s^k_i \neq s^k_{i'}$ if $i \neq i'$;
- $i_k < \lambda_k$;
- $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$;
- $s^k_{i+1} \sqsupset s^k_{i_k}$ and $t^k_{i+1} \sqsupset t^k_{i_k}$ for all $i < \lambda_{k+1}$, and $z_{k+1} \sqsupset z_k$.

I wins if she can play for infinitely many turns.
Proof of the main theorem

When I wins a run, she has built an element $x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda$, and a
$y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda$
When I wins a run, she has built an element $x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda$, and a $y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda$ witnessing that $x \in Z$ — the well-foundedness of the corresponding tower is witnessed by $z = \bigcup_{k \in \omega} z_k$, since $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$.
Proof of the main theorem

When I wins a run, she has built an element $x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda$, and a $y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda$ witnessing that $x \in Z$ — the well-foundedness of the corresponding tower is witnessed by $z = \bigcup_{k \in \omega} z_k$, since $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$.

$G(Z)$ is a closed game, hence determined.
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a \(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \).
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s_{i_k}^k \in \omega \lambda \), and a \(y = \bigcup_{k \in \omega} t_{i_k}^k \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the

\(\text{corresponding tower is witnessed by } z = \bigcup_{k \in \omega} z_k, \text{ since } z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})). \)

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of
\(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s_{i_k}^k \subseteq \omega \lambda \), and a \(y = \bigcup_{k \in \omega} t_{i_k}^k \subseteq \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \cong \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

<table>
<thead>
<tr>
<th>I</th>
<th>((s_{i_0}^0, t_{i_0}^0)_{i < \lambda_0})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s_{i_k}^k \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t_{i_k}^k \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of
\(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

\[
\begin{array}{c|c|c}
I & (s_i^0, t_i^0)_{i < \lambda_0} & \rule{0pt}{2.5ex} \\
\hline
II & (s_{i_0}^0, t_{i_0}^0)_{i_0 < \lambda_0} & \rule{0pt}{2.5ex}
\end{array}
\]
Proof of the main theorem

When I wins a run, she has built an element $x = \bigcup_{k \in \omega} s_{i_k}^k \in \omega \lambda$, and a
$y = \bigcup_{k \in \omega} t_{i_k}^k \in \omega \lambda$ witnessing that $x \in Z$ — the well-foundedness of the
corresponding tower is witnessed by $z = \bigcup_{k \in \omega} z_k$, since $z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k))$.

$G(Z)$ is a closed game, hence determined. If I has a winning strategy,
testing it against all possible moves of II we get an embedding of
$\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda 2$ into Z. So let us assume that II has a winning
strategy τ in $G(Z)$.

Consider the auxiliary game $G^*(Z)$ (or rather $G(\pi)$)

\[
\begin{array}{c|c|c}
I & (s_i^0, t_i^0)_{i<\lambda_0} & (s_i^1, t_i^1)_{i<\lambda_1} \\
\hline
\Pi & i_0 & i_0 \\
\end{array}
\]

where I does not have to produce the witnesses z_k,
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the
corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy,
testing it against all possible moves of II we get an embedding of
\(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning
strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

<table>
<thead>
<tr>
<th></th>
<th>((s^0_i, t^0_i)_{i < \lambda_0})</th>
<th>((s^1_i, t^1_i)_{i < \lambda_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>(i_0)</td>
<td>(i_1)</td>
</tr>
</tbody>
</table>

where I does not have to produce the witnesses \(z_k \),
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a \(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

<table>
<thead>
<tr>
<th></th>
<th>((s^0_i, t^0_i)_{i < \lambda_0})</th>
<th>((s^1_i, t^1_i)_{i < \lambda_1})</th>
<th>((s^2_i, t^2_i)_{i < \lambda_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where I does not have to produce the witnesses \(z_k \),

L. Motto Ros (Turin, Italy)
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s_{i_k}^k \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t_{i_k}^k \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the
corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy,
testing it against all possible moves of II we get an embedding of
\(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning
strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

<table>
<thead>
<tr>
<th></th>
<th>((s_i^0, t_i^0)_{i < \lambda_0})</th>
<th>((s_i^1, t_i^1)_{i < \lambda_1})</th>
<th>((s_i^2, t_i^2)_{i < \lambda_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where I does not have to produce the witnesses \(z_k \),
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

<table>
<thead>
<tr>
<th></th>
<th>((s^0_i, t^0_i)_{i<\lambda_0})</th>
<th>((s^1_i, t^1_i)_{i<\lambda_1})</th>
<th>((s^2_i, t^2_i)_{i<\lambda_2})</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(i_0)</td>
<td>(i_1)</td>
<td>(i_2)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where I does not have to produce the witnesses \(z_k \),
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a \(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

I	\((s^0_i, t^0_i)_{i<\lambda_0}\)	\((s^1_i, t^1_i)_{i<\lambda_1}\)	\((s^2_i, t^2_i)_{i<\lambda_2}\)	\(\ldots\)
II	\(i_0\)	\(i_1\)	\(i_2\)	\(\ldots\)

where I does not have to produce the witnesses \(z_k \),
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k\in\omega} s^{k}_{i_k} \in \omega \lambda \), and a \(y = \bigcup_{k\in\omega} t^{k}_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the corresponding tower is witnessed by \(z = \bigcup_{k\in\omega} z_k \), since \(z_k \in F(\pi(s^{k}_{i_k}, t^{k}_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy, testing it against all possible moves of II we get an embedding of \(\prod_{k\in\omega} \lambda_k = C(\lambda) \approx \lambda^2 \) into \(Z \). So let us assume that II has a winning strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

\[
\begin{array}{c|c|c|c|c}
I & (s^{0}_{i}, t^{0}_{i})_{i<\lambda_0} & (s^{1}_{i}, t^{1}_{i})_{i<\lambda_1} & (s^{2}_{i}, t^{2}_{i})_{i<\lambda_2} & \ldots \\
\hline
II & i_0 & i_1 & i_2 & \ldots \\
\end{array}
\]

where I does not have to produce the witnesses \(z_k \), and I wins iff \(x = \bigcup_{k\in\omega} s^{k}_{i_k} \in Z \) with \(y = t^{k}_{i_k} \) witnessing this.
Proof of the main theorem

When I wins a run, she has built an element \(x = \bigcup_{k \in \omega} s^k_{i_k} \in \omega \lambda \), and a
\(y = \bigcup_{k \in \omega} t^k_{i_k} \in \omega \lambda \) witnessing that \(x \in Z \) — the well-foundedness of the
 corresponding tower is witnessed by \(z = \bigcup_{k \in \omega} z_k \), since \(z_k \in F(\pi(s^k_{i_k}, t^k_{i_k})) \).

\(G(Z) \) is a closed game, hence determined. If I has a winning strategy,
testing it against all possible moves of II we get an embedding of
\(\prod_{k \in \omega} \lambda_k = C(\lambda) \approx ^\lambda 2 \) into \(Z \). So let us assume that II has a winning
strategy \(\tau \) in \(G(Z) \).

Consider the auxiliary game \(G^*(Z) \) (or rather \(G(\pi) \))

\[
\begin{array}{c|c|c|c|c|}
I & (s^0_i, t^0_i)_{i<\lambda_0} & (s^1_i, t^1_i)_{i<\lambda_1} & (s^2_i, t^2_i)_{i<\lambda_2} & \ldots \\
\hline
II & i_0 & i_1 & i_2 & \ldots \\
\end{array}
\]

where I does not have to produce the witnesses \(z_k \), and I wins iff
\(x = \bigcup_{k \in \omega} s^k_{i_k} \in Z \) with \(y = t^k_{i_k} \) witnessing this. A priori, such a game is
not necessarily determined (the complexity of the payoff depends on the
complexity of \(Z \) and \(\pi \)), but...
Proof of the main theorem

...any winning strategy \(\tau \) of II in \(G(Z) \) can be converted into a winning strategy \(\tau^* \) of II in \(G^*(Z) \).
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s^k_{ik}, t^k_{ik}))$ that I could play.
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k))$ that I could play. Using λ-completeness of $\pi(s_{i_k}^k, t_{i_k}^k)$, for a measure-one set of these possibilities τ will suggest the very same move \bar{i}_k:
Proof of the main theorem

...any winning strategy \(\tau \) of II in \(G(Z) \) can be converted into a winning strategy \(\tau^* \) of II in \(G^*(Z) \).

The idea is that II simulates a run in \(G(Z) \) testing all possible \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \) that I could play. Using \(\lambda \)-completeness of \(\pi(s_{i_k}^k, t_{i_k}^k) \), for a measure-one set of these possibilities \(\tau \) will suggest the very same move \(\bar{i}_k \): then II plays precisely this \(\bar{i}_k \) in his corresponding turn in \(G^*(Z) \).
...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s_{ik}^k, t_{ik}^k))$ that I could play. Using λ-completeness of $\pi(s_{ik}^k, t_{ik}^k)$, for a measure-one set of these possibilities τ will suggest the very same move $\bar{\imath}_k$: then II plays precisely this $\bar{\imath}_k$ in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.
Proof of the main theorem

...any winning strategy \(\tau \) of II in \(G(Z) \) can be converted into a winning strategy \(\tau^* \) of II in \(G^*(Z) \).

The idea is that II simulates a run in \(G(Z) \) testing all possible \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \) that I could play. Using \(\lambda \)-completeness of \(\pi(s_{i_k}^k, t_{i_k}^k) \), for a measure-one set of these possibilities \(\tau \) will suggest the very same move \(\bar{i}_k \): then II plays precisely this \(\bar{i}_k \) in his corresponding turn in \(G^*(Z) \).

Claim. If II wins \(G^*(Z) \), then \(|Z| \leq \lambda \).

Given a position \(p \) in the game \(G^*(Z) \) consisting of \(k \)-many rounds, let \(A_p \) be the set of those \(s_{i_k}^{k-1} \sqsubseteq x \in \omega \lambda \) for which whatever I plays in her next turn, the answer by II following \(\tau^* \) is such that \(s_{i_k}^k \nsubseteq x \).
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$ that I could play. Using λ-completeness of $\pi(s^k_{i_k}, t^k_{i_k})$, for a measure-one set of these possibilities τ will suggest the very same move \bar{i}_k: then II plays precisely this \bar{i}_k in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.

Given a position p in the game $G^*(Z)$ consisting of k-many rounds, let A_p be the set of those $s^k_{i_{k-1}} \sqsubseteq x \in \omega \lambda$ for which whatever I plays in her next turn, the answer by II following τ^* is such that $s^k_{i_k} \not\sqsubseteq x$. Arguing as in the classical case, one gets $|A_p| \leq (\lambda_k)^\omega < \lambda$.

L. Motto Ros (Turin, Italy)
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k))$ that I could play. Using λ-completeness of $\pi(s_{i_k}^k, t_{i_k}^k)$, for a measure-one set of these possibilities τ will suggest the very same move \bar{v}_k: then II plays precisely this \bar{v}_k in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.

Given a position p in the game $G^*(Z)$ consisting of k-many rounds, let A_p be the set of those $s_{i_{k-1}}^{k-1} \sqsubseteq x \in \omega \lambda$ for which whatever I plays in her next turn, the answer by II following τ^* is such that $s_{i_k}^k \not\sqsubseteq x$. Arguing as in the classical case, one gets $|A_p| \leq (\lambda_k)^\omega < \lambda$. Moreover, $Z \subseteq \bigcup_p A_p$ because any $x \in Z \setminus \bigcup_p A_p$ would yield a strategy for I in $G^*(Z)$ defeating τ^*.
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$ that I could play. Using λ-completeness of $\pi(s^k_{i_k}, t^k_{i_k})$, for a measure-one set of these possibilities τ will suggest the very same move \bar{i}_k: then II plays precisely this \bar{i}_k in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.

Given a position p in the game $G^*(Z)$ consisting of k-many rounds, let A_p be the set of those $s^k_{i_k-1} \sqsubseteq x \in \omega \lambda$ for which whatever I plays in her next turn, the answer by II following τ^* is such that $s^k_{i_k} \not\sqsubseteq x$. Arguing as in the classical case, one gets $|A_p| \leq (\lambda_k)^\omega < \lambda$. Moreover, $Z \subseteq \bigcup_p A_p$ because any $x \in Z \setminus \bigcup_p A_p$ would yield a strategy for I in $G^*(Z)$ defeating τ^*.

Finally, a direct computation shows that there are only λ-many possible positions p in $G^*(Z)$,
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s^k_{i_k}, t^k_{i_k}))$ that I could play. Using λ-completeness of $\pi(s^k_{i_k}, t^k_{i_k})$, for a measure-one set of these possibilities τ will suggest the very same move \bar{i}_k: then II plays precisely this \bar{i}_k in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.

Given a position p in the game $G^*(Z)$ consisting of k-many rounds, let A_p be the set of those $s^k_{i_k-1} \subseteq x \in \omega \lambda$ for which whatever I plays in her next turn, the answer by II following τ^* is such that $s^k_{i_k} \not\subseteq x$. Arguing as in the classical case, one gets $|A_p| \leq (\lambda_k)^\omega < \lambda$. Moreover, $Z \subseteq \bigcup_p A_p$ because any $x \in Z \setminus \bigcup_p A_p$ would yield a strategy for I in $G^*(Z)$ defeating τ^*.

Finally, a direct computation shows that there are only λ-many possible positions p in $G^*(Z)$, whence $|Z| \leq \left| \bigcup_p A_p \right|$.
Proof of the main theorem

...any winning strategy τ of II in $G(Z)$ can be converted into a winning strategy τ^* of II in $G^*(Z)$.

The idea is that II simulates a run in $G(Z)$ testing all possible $z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k))$ that I could play. Using λ-completeness of $\pi(s_{i_k}^k, t_{i_k}^k)$, for a measure-one set of these possibilities τ will suggest the very same move \bar{i}_k: then II plays precisely this \bar{i}_k in his corresponding turn in $G^*(Z)$.

Claim. If II wins $G^*(Z)$, then $|Z| \leq \lambda$.

Given a position p in the game $G^*(Z)$ consisting of k-many rounds, let A_p be the set of those $s_{i_{k-1}}^{k-1} \sqsubseteq x \in \omega \lambda$ for which whatever I plays in her next turn, the answer by II following τ^* is such that $s_{i_k}^k \not\sqsubseteq x$. Arguing as in the classical case, one gets $|A_p| \leq (\lambda_k)^\omega < \lambda$. Moreover, $Z \subseteq \bigcup_p A_p$ because any $x \in Z \setminus \bigcup_p A_p$ would yield a strategy for I in $G^*(Z)$ defeating τ^*.

Finally, a direct computation shows that there are only λ-many possible positions p in $G^*(Z)$, whence $|Z| \leq \left|\bigcup_p A_p\right| \leq \lambda \cdot \lambda$.
Proof of the main theorem

...any winning strategy \(\tau \) of II in \(G(Z) \) can be converted into a winning strategy \(\tau^* \) of II in \(G^*(Z) \).

The idea is that II simulates a run in \(G(Z) \) testing all possible \(z_k \in F(\pi(s_{i_k}^k, t_{i_k}^k)) \) that I could play. Using \(\lambda \)-completeness of \(\pi(s_{i_k}^k, t_{i_k}^k) \), for a measure-one set of these possibilities \(\tau \) will suggest the very same move \(\bar{i}_k \): then II plays precisely this \(\bar{i}_k \) in his corresponding turn in \(G^*(Z) \).

Claim. If II wins \(G^*(Z) \), then \(|Z| \leq \lambda \).

Given a position \(p \) in the game \(G^*(Z) \) consisting of \(k \)-many rounds, let \(A_p \) be the set of those \(s_{i_{k-1}}^{k-1} \sqsubseteq x \in \omega \lambda \) for which whatever I plays in her next turn, the answer by II following \(\tau^* \) is such that \(s_{i_k}^k \not\sqsubseteq x \). Arguing as in the classical case, one gets \(|A_p| \leq (\lambda_k)^\omega < \lambda \). Moreover, \(Z \subseteq \bigcup_p A_p \) because any \(x \in Z \setminus \bigcup_p A_p \) would yield a strategy for I in \(G^*(Z) \) defeating \(\tau^* \). Finally, a direct computation shows that there are only \(\lambda \)-many possible positions \(p \) in \(G^*(Z) \), whence \(|Z| \leq \left| \bigcup_p A_p \right| \leq \lambda \cdot \lambda = \lambda \).
Thank you for your attention!